Notes for the Loxahatchee River Reasonable Assurance Plan Workshop on 24-AUG-17

Rainfall Sources:

- 1. SFWMD DBHydro: There are three rain gauges within the vicinity of the Loxahatchee River RAP
 - a. JDWX Jonathan Dickinson State Park from 12-SEP-97 to CURRENT 20 years POR
 - b. SIRG South Indian River in Jupiter Farms from 28-OCT-93 to 13-JUL-16 23 years POR
 - c. S46 R Structure 46 SW Fork of Loxahatchee River, North of Indiantown Road from 18-MAR-97 to CURRENT - 20 years POR
- 2. St Lucie BMAP: There are six (6) sub-basins within the BMAP with the South Fork Basin being the closest to the Loxahatchee River RAP

	<u>Basin</u>	Inches
a.	South Fork	57.7 – Closest to Loxahatchee River RAP
b.	North Fork	50.8
C.	Basin 4 / 5 / 6	53.9
d.	C-44	49.3
e.	C-24	53.6
f.	C-23	49.9

- Existing Report: There are two existing reports that can be utilized and evaluated for rainfall
 - a. Evaluation of Water Quality Stormwater Regulations for Martin County, dated May 2000 prepared by Environmental Research & Design (ERD), Harper, Herr & Baker.

This report preformed, "....a detailed hydrologic evaluation which utilized hourly rainfall records from the National Climatic Data Center for St. Lucie Canal Lock from 1942 to 1993"

This is a POR of 51 years, that provided an Total Average Annual Rainfall Amount = 52.33"

b. Evaluation of Current Stormwater Design Criteria within the State of Florida, Final Report, dated June 2007, prepared by Environmental Research & Design (ERD), Harper & Baker.

This report conducted a continues simulation hydrologic model which evaluates rainfall/runoff relationships over an extended period of time. A list of the 45 monitoring stations in the report are provided in Table 4-19: Listing of NCDC Hourly Precipitation Monitoring Stations in Florida

The closest station was St. Lucie New Lock 1 (7859) with the following information: 35

- No. of Years: i.
- No. of Events: 4688 ii.
- Mean Annual Rainfall: 54.82 inches iii.
- Maximum Event: 10.66 inches iv.
- Mean Event: 0.41 inches ٧.

Event Mean Concentrations:

A comparison of Event Mean Concentrations (EMC) between those values in the Loxahatchee RAP and the St Lucie Estuary BMAP was completed. To understand the comparison, you need to know where and how the EMCs were derived in the St Lucie BMAP.

The majority of the "Base" EMCs from the BMAP are consistent with the values given in Table 4-17: Summary of Literature-Based Runoff Characterized Data for General Land Use Categories in Florida, from the report Evaluation of Current Stormwater Design Criteria within the State of Florida, June 2007, Harper & Baker. This report utilized a number of stormwater characterization studies from around the State to derive a mean value for a given land use type.

The St Lucie BMAP utilizes these values as the Base EMCs, and then a Factor is applied to derive the EMCs used in the BMAP. This factor is, [assuming], applied to better represent the EMC's in this part of Florida.

The below table represents the EMC values in the RAP and BMAP. Both the "Base" and "Factor" values are given from the BMAP. The Delta comparison is the difference between the RAP EMC value compared to the BMAP value, a red value indicates that the BMAP EMC is higher than the RAP EMC, a green value indicates that the BMAP EMC. The green shaded values represent those values consistent with the *Evaluation of Current Stormwater Design Criteria within the State of Florida*, report, whereas the green cross hatched values are inconsistent with the report.

Comparison of EMCs Between Loxahatchee River RAP and the St Lucie Estuary BMAP												
		St Luce BMAP					Delta					
		LOX	RAP	Ba	ase	w/ Factor			Base		w/ Factor	
						0.6012	12 0.6520				0.6012	0.6520
		TN	TP	TN	TP	TN	TP		TN	TP	TN	TP
FLUCC	Land Use Category	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)		(mg/l)	(mg/l)	(mg/l)	(mg/l)
1100	Low Density Residential	1.51	0.178	1.61	0.191	0.97	0.125		-0.10	-0.013	0.54	0.053
1200	Single Family	1.87	0.301	2.07	0.327	1.24	0.213		-0.20	-0.026	0.63	0.088
1300	High Density Residential	2.10	0.497	2.32	0.520	1.39	0.339		-0.22	-0.023	0.71	0.158
1800	Low Intensity Commercial	1.07	0.179	1.18	0.179	0.71	0.117		-0.11	0.000	0.36	0.062
1400	High Intensity Commercial	2.20	0.248	2.40	0.345	1.44	0.225		-0.20	-0.097	0.76	0.023
1500	Industrial	1.19	0.213	1.20	0.260	0.72	0.170		-0.01	-0.047	0.47	0.043
1600	Mining	1.18	0.150	1.18	0.150	0.71	0.098		0.00	0.000	0.47	0.052
1900	Urban Open Land	1.15	0.055	1.15	0.055	0.69	0.036		0.00	0.000	0.46	0.019
2000	General Agriculture	2.79	0.431	2.79	0.750	1.68	0.489		0.00	-0.319	1.11	-0.058
2100	Pasture	3.30	0.621	3.35	0.440	2.01	0.287		-0.05	0.181	1.29	0.334
2140	Row Crops	2.46	0.489	2.90	0.890	1.74	0.580		-0.44	-0.401	0.72	-0.091
2210	Citrus	2.07	0.152	2.24	0.420	1.35	0.274		-0.17	-0.268	0.72	-0.122
3000	Rangeland	1.15	0.055	1.15	0.055	0.69	0.036		0.00	0.000	0.46	0.019
4000	Upland Forrest	1.15	0.055	1.15	0.055	0.69	0.036		0.00	0.000	0.46	0.019
5000	Water	1.60	0.067	0.84	0.105	0.51	0.068		0.76	-0.038	1.09	-0.001
6000	Wetlands	1.01	0.090	1.01	0.050	0.61	0.033		0.00	0.040	0.40	0.057
7000	Barren Land	1.15	0.055	1.18	0.150	0.71	0.098		-0.03	-0.095	0.44	-0.043
8000	Transportation, Communication and Utilities	1.37	0.167	1.64	0.220	0.99	0.143		-0.27	-0.053	0.38	0.024
	= Values consistant with the report, Evaluation o Current Stormwater Design Criteria within the State of Florida, June 2007, Harper & Baker											
= Values inconsistant with the report, Evaluation o Current Stormwater Design Criteria within the State of Florida, June 2007, Harper & Baker												

Runoff Coefficients:

Runoff coefficients (ROC) are a function of soil types and soil storage, directly connected impervious area (DCIA), and Curve Numbers. In the Lox River RAP model, the ROCs used are directly from the St Lucie BMAP. I do not know where or how these ROCs were determined, however, I suspect that they were scrutinized during the BMAP process. Similar with the EMCs, there is a "*Base*" values given for each land use, and soil type. This *Base* is multiplied by a *Factor* (0.8628) to obtain the ROC value used in the model. I do not know what the *Factor* represents and why it is applied. It's also important to note that the ROCs in the St Lucie BMAP, for each Land Use given are the same for each Soil Type. This is something that should be considered in the Next iteration of the BMAP.

An alternative would be the use of the ROCs in the *Evaluation of Current Stormwater Design Criteria within the State of Florida*, June 2007, Harper & Baker, given in Table 4-24: Summary of Mean Runoff Coefficients for Each Cluster as a Function of Land Use and Hydrologic Soil Group. The issue with using this table is, there are limited Land Uses given, and some assumptions would need to be made, or, additionally in the same report, Appendix C, Zone 5, Mean Annual Runoff Coefficients (C values) as a Function of DCIA Percentage and Non-DCIA Curve Number (CN) can be utilized. However, additional calculations and assumptions would need to be made to determine the Directly Connected Impervious Area (DCIA) and Curve Numbers for the pervious areas. By using the Appendix C table, the ROCs would be open to interpretation and the consistency of the ROCs would be lost.

The Spreadsheet Model – How it Works

The spreadsheet model determines the *Existing Condition Loads* to the waterbody. Below is the East Fork Creek calculations from the St Lucie BMAP, given as an example. The input data that needs to be determined once the total watershed area has been identified are the Land Use Types and Soil Types. From this information the area of each Land Use type per Soil Type needs to be determined. This information is highlighted in green and is input under Column B, Land Use; Column D, Hydrologic Soil Type, and Column K, Acres. Then given the Land Use Type the corresponding TN EMC and TP EMC is input in Columns H and I, respectively, and given the Soil Type, the corresponding ROC is input in Column J. This information is

highlighted below in orange. The Rainfall amount in Column F, is predetermined and in this example is in the South Fork basin of the BMAP and the value is 57.7 inches, highlighted in red. Columns A and C are informational data to identify the name of the project and the WBID. Columns E and G are included in the BMAP to account for additional TP and Base flows, if needed. In this example there is additional TP account for, but no additional base flow. The spreadsheet calculates the Runoff volume, in Acre-Feet, by the following formula...

Runoff (ac-ft) = (Rainfall (F) * Runoff Coefficient (J) * Acres (K) / 12) + (Baseflow (G) * Acres (K))

Once the volume of Runoff is calculated, then the Existing Conditions Nutrient Loadings for TN and TP are calculated by the following formulas....

TN (lbs/yr) = (2.721 * TN EMC (H) * Runoff (L)) TP (lbs/yr) = (2.721 * TP EMC (I) * Runoff (L))

Whereas, 2.721 is the conversion factor from mg/l to lbs/ac-ft.

For this example, for the 2,325 acre basin, the annual runoff volume is 2,997.03 Ac-ft, which produces a nutrient load of 9,346.1 pounds of TN per year and 1,953.9 pounds of TP per year.

EAST FORK CREEK Example													
А	В	С	D	E	F	G	н	1	J	к	L	М	N
											Runoff		
Name	LAND_COVER	LOXRAP_WBID	HYDGRP	TP_Add	Rain_in	Baseflw_ft	TN_EMC	TP_EMC	ROC Acres		Ac-ft	TN lbs/yr	TP lbs/yr
East Fork Creek	1310	COASTAL	А	0.1900	57.7000	0.0000	1.240	0.213	0.393	0.393 40.00		255	51.4
East Fork Creek	1310	COASTAL	B/D	0.1900	57.7000	0.0000	1.240	0.213	0.393 230.00		434.63	1466.4	295.6
East Fork Creek	1310	COASTAL	С	0.1900	57.7000	0.0000	1.240	0.213	0.393 40.00		75.59	255	51.4
East Fork Creek	1310	COASTAL	D	0.1900	57.7000	0.0000	1.240	0.213	0.393 85.25		161.09	543.5	109.6
East Fork Creek	1320	COASTAL	А	0.1900	57.7000	0.0000	1.390	0.339	0.393 114.00		215.42	814.8	220.4
East Fork Creek	1320	COASTAL	С	0.1900	57.7000	0.0000	1.390	0.339	0.393	211.50	399.67	1511.6	408.8
East Fork Creek	1400	COASTAL	B/D	0.1900	57.7000	0.0000	0.710	0.117	0.431 46.50		96.37	186.2	39.5
East Fork Creek	1700	COASTAL	B/D	0.1900	57.7000	0.0000	0.970	0.125	0.341	14.87	24.38	64.4	11.1
East Fork Creek	1700	COASTAL	D	0.1900	57.7000	0.0000	0.970	0.125	0.341	20.00	32.79	86.6	15
East Fork Creek	1820	COASTAL	А	0.1900	57.7000	0.0000	2.010	0.287	0.289	25.00	34.74	190	31.9
East Fork Creek	1820	COASTAL	B/D	0.1900	57.7000	0.0000	2.010	0.287	0.289	170.75	237.28	1297.7	217.7
East Fork Creek	1820	COASTAL	С	0.1900	57.7000	0.0000	2.010	0.287	0.289	30.00	41.69	228	38.3
East Fork Creek	1820	COASTAL	D	0.1900	57.7000	0.0000	2.010	0.287	0.209	30.00	30.13	164.8	29.2
East Fork Creek	1920	COASTAL	D	0.1900	57.7000	0.0000	0.690	0.036	0.288	232.50	321.97	604.5	75.7
East Fork Creek	3200	COASTAL	A	0.1900	57.7000	0.0000	0.690	0.036	0.262	186.00	234.32	439.9	58.3
East Fork Creek	4130	COASTAL	B/D	0.1900	57.7000	0.0000	0.690	0.036	0.262	82.00	103.30	193.9	25.7
East Fork Creek	4130	COASTAL	D	0.1900	57.7000	0.0000	0.690	0.036 0.262		80.75	101.73	191	25.3
East Fork Creek	5200	COASTAL	B/D	0.1900	57.7000	0.0000	0.510	0.068 0.053		80.75	20.58	28.6	19.2
East Fork Creek	5200	COASTAL	D	0.1900	57.7000	0.0000	0.510	0.068 0.053		82.00	20.90	29	19.4
East Fork Creek	5250	COASTAL	D	0.1900	57.7000	0.0000	0.510	0.068	0.053	267.38	68.14	94.6	63.4
East Fork Creek	6250	COASTAL	B/D	0.1900	57.7000	0.0000	0.610	0.033	0.026	69.75	8.72	14.5	14
East Fork Creek	6250	COASTAL	D	0.1900	57.7000	0.0000	0.610	0.033	0.026	69.75	8.72	14.5	14
East Fork Creek	8100	COASTAL	A	0.1900	57.7000	0.0000	0.990	0.143	0.446	46.50	99.72	268.6	47.6
East Fork Creek	8100	COASTAL	С	0.1900	57.7000	0.0000	0.990	0.143	0.446	6.00	12.87	34.7	6.1
East Fork Creek	8100	COASTAL	B/D	0.1900	57.7000	0.0000	0.990	0.143	0.143 0.446		136.71	368.3	65.3
										2325.00	2997.03	9346.10	1953.90
									6011	TVDEC			
	LAND USES				205.25	47.00/		2	SOIL				
	1310 High Density - SFR			395.25	17.0%		2	Lawnwood Fir					
	1320 High Density - Mobil Home			325.50	14.0%		4	Waveland San					
	1400 Commercial		nercial & Services		46.50	2.0%		5 Waveland Sand		d, Depression: D			
	1/00	Institutional			34.88	1.5%		5 Paola Sano			A		
	1820	Golf courses	with Church	t Detterme	255.75	11.0%		/	St Lucie Sand		A		
	1920	Inactive Land	with Stree	et Patterns	232.50	10.0%		10 Basinger Fine sand, de		sand, depressi	B/D		
	3200	Opialiu Shirub	anu brusi	Lanu	160.00	8.0%		12	Placid cand				
	4150	Sanu Pine			102.75	7.0%		13	Fidulu Sdilu Satallita Variant cand		6/0		
	5200	LdKes Marchy Lake			102.75	7.0%		14	Dipodo cond				
	5250	Wat Dingland	- Hydric P	line	120 50	£ 0%		21	Salerno Sand		B/D		
	0250	8100 Transportation		me	116 25	0.U%		40 Sanibel mu		anihel muck			
	8100	mansportation			2225 00	100%		40	Jonathan sand		B		
					2523.00	100%		41 JUIIdUIdII		wabasso sand			
					2325 00			50	Fau Gallie Ein	a sand	D		
					2323.00			64	Tuscawilla cor	Eau Gaille Fille Sallu			
								03	i uscawind Sdl	u .	U		